

Didaktik der Informat	Why to use functional modeling ?		
🖬 Microsoft Excel - Zinsen			
🗐 Datei Bearbeiten Ansicht Einfügen Format Extras Daten Eenster 2 – 🗗 🗙			
i 1 🞯 🖬 3 3 3 3 3 3 3 3 3 3			
A1 -	🛛 Microsoft Excel - Zinsen		
1 Anfang	i∰ Datei Bearbeten Ansicht Einfügen Format Extras Daten Eenster 2 - 5 × □ ☞ □ 2 3 3 10 10 - 10 10 - 10 10 20 10 - 10 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 01.01.2005			
3			
5	A B C D E F G		
6	1 Anfang Ende Zinssatz Kapital		
7	2 30002 30002 3000 2,7 100 190000		
9	4 = (12-A2)/360 = 2/F2		
10	5		
11	6		
R ← ► N \ Labelle1	7 = Dar Fo		
bereit	9		
	10 = RÜNDEN(D7;2)		
l			
Markus Schneider Klagenfurt, March 2005			

Didaktik der Informatik If(?;?;?)	<u>An algorithm to compress data</u> <u>diagrams to terms</u>	<u>flow</u>	
If(isTriangle(?; ?; ?); SQRT(?); -1)			
If(isTriangle(a; b; c); SQRT(?*(?-a)*(?-b)*(?-c)); -1) If(isTriangle(a; b; c); SQRT((0.5*(a+b+c))			
	((0.5(a+b+c))-b)		
	((0.5(a+b+c))-c)); -1)		
lf(And(a>0; b>0; c>0; a <b+c; b<a+c;="" c<a+b);<="" th=""></b+c;>			
	SQRT((0.5*(a+b+c))		
	((0.5(a+b+c))-a)		
	((0.5(a+b+c))-b)		
	((0.5(a+b+c))-c)); -1)		
Markus Schneider	Klagenfurt, March 2005	14	

<u>An algorithm to compress data flow</u> diagrams to terms

The recursive algorithm:

- Start with the outermost function, i.e. with the root of the calculation tree; the arguments of this function are occupied by suitable identifiers
- Proceed with sub-trees and substitute the identifiers by functions or data respectively
- · The algorithm terminates with the substitution of data elements

Background information:

- · Recursive descend on tree structures
- The tree as an recursive data structure is already known from the 6th degree
 - Structure of file-systems
 - Structure of documents

Markus Schneider

Klagenfurt, March 2005

15

Iterative Structures

Iterative problems can be modeled by data flow diagrams in the following way:

- One data flow diagram representing the loop or the tail-recursive call
- A second data flow diagram representing the body of the loop

Problems:

- Modeling iterative (i.e. tail-recursive) structures suggest a variable concept, which is not yet available
- The model behind spreadsheet calculation is the functional one, i.e. we have no variables!
- The implementation suggest the wrong mental model!
- Consequence: The discussion of iterative structures ought to be done in the context of the imperative program paradigm!

Markus Schneider

Klagenfurt, March 2005

19